Translocation of Escherichia coli recA protein from a single-stranded tail to contiguous duplex DNA.

نویسندگان

  • S L Shaner
  • C M Radding
چکیده

Duplex DNA with a contiguous single-stranded tail was nearly as effective as single-stranded DNA in acting as a cofactor for the ATPase activity of recA protein at neutral pH and concentrations of MgCl2 that support homologous pairing. The ATP hydrolysis reached a steady state rate that was proportional to the length of the duplex DNA attached to a short 5' single-stranded tail after a lag. Separation of the single-stranded tail from most of the duplex portion of the molecule by restriction enzyme cleavage led to a gradual decline in ATP hydrolysis. Measurement of the rate of hydrolysis as a function of DNA concentration for both tailed duplex DNA and single-stranded DNA cofactors indicated that the binding site size of recA protein on a duplex DNA lattice, about 4 base pairs, is similar to that on a single-stranded DNA lattice, about four nucleotides. The length of the lag phase preceding steady state hydrolysis depended on the DNA concentration, length of the duplex region, and the polarity of the single-stranded tail, but was comparatively independent of tail length for tails over 70 nucleotides in length. The lag was 5-10 times longer for 3' than for 5' single-stranded tailed duplex DNA molecules, whereas the steady state rates of hydrolysis were lower. These observations show that, after nucleation of a recA protein complex on the single-stranded tail, the protein samples the entire duplex region via an interaction that is labile and not strongly polarized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STABLE COMPLEXES OF recA PROTEIN AND SINGLE-STRANDED DNA FORMED IN THE PRESENCE OF ATP AND SINGLE-STRANDED DNA BINDING PROTEIN*

The recA protein of Escherichia coli promotes the complete exchange of strands between full length linear duplex and single-stranded circular DNA rnolecules. An early step in this reaction consists of the binding of recA protein to single-stranded DNA. In the presence of ATP and the single-stranded DNA binding protein, recA protein and single-stranded DNA interact to form a complex whose stabil...

متن کامل

recA protein-promoted DNA strand exchange. Stable complexes of recA protein and single-stranded DNA formed in the presence of ATP and single-stranded DNA binding protein.

The recA protein of Escherichia coli promotes the complete exchange of strands between full length linear duplex and single-stranded circular DNA molecules. An early step in this reaction consists of the binding of recA protein to single-stranded DNA. In the presence of ATP and the single-stranded DNA binding protein, recA protein and single-stranded DNA interact to form a complex whose stabili...

متن کامل

recA protein-catalyzed strand assimilation: stimulation by Escherichia coli single-stranded DNA-binding protein.

The single-stranded DNA-binding protein of Escherichia coli significantly alters the strand assimilation reaction catalyzed by recA protein [McEntee, K., Weinstock, G. M. & Lehman, I. R. (1979) Proc. Natl. Acad. Sci. USA 76, 2615--2619]. The binding protein (i) increases the rate and extent of strand assimilation into homologous duplex DNA, (ii) enhances the formation of a complex between recA ...

متن کامل

Inhibition of RecA protein function by the RdgC protein from Escherichia coli.

The Escherichia coli RdgC protein is a potential negative regulator of RecA function. RdgC inhibits RecA protein-promoted DNA strand exchange, ATPase activity, and RecA-dependent LexA cleavage. The primary mechanism of RdgC inhibition appears to involve a simple competition for DNA binding sites, especially on duplex DNA. The capacity of RecA to compete with RdgC is improved by the DinI protein...

متن کامل

On the mechanism of pairing of single- and double-stranded DNA molecules by the recA and single-stranded DNA-binding proteins of Escherichia coli.

The pairing of single- and double-stranded DNA molecules at homologous sequences promoted by recA and single-stranded DNA-binding proteins of Escherichia coli follows apparent first-order kinetics. The initial rate and first-order rate constant for the reaction are maximal at approximately 1 recA protein/3 and 1 single-stranded DNA-binding protein/8 nucleotides of single-stranded DNA. The initi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 262 19  شماره 

صفحات  -

تاریخ انتشار 1987